divendres, 12 de desembre del 2014

L'ACCENTUACIÓ



Clica al següent enllaç per classificar paraules en agudes, planes i esdrúixoles.


Activitats per treballar l'accentuació:


dijous, 11 de desembre del 2014

QUAN SOMRIUS .....


LLETRA

Ara que la nit s'ha fet més llarga 
Ara que les fulles ballen danses al racó 
Ara que els carrers estan de festa 
Avui que la fred du tants records 

Ara que sobren les paraules 
Ara que el vent bufa tant fort 
Avui que no em fa falta veure't, ni tan sols parlar 
Per saber que estàs al meu costat 

És Nadal al meu cor 
Quan somrius content de veure'm 
Quan la nit és fa més freda 
Quan t'abraces al meu cos 

I les llums de colors 
M'il·luminen nit i dia 
Les encens amb el somriure 
Quan em parles amb el cor 


És el buit que deixes quan t'aixeques 
És el buit que és fa a casa quan no hi ha ningú 
Són petits detalls tot el que hem queda 
Com queda al jersei un cabell larg 

Vas dir que mai més tornaries 
El temps pacient ha anat passant 
Qui havia de dir que avui estaries esperant 
Que ens trobéssim junts al teu costat 

És Nadal al teu cor 
Quant somric content de veure't 
Quan la nit es fa més neta 
Quan m'abraço al teu cos 

I les llums de colors 
M'il·luminen nit i dia 
Les encén el teu somriure 
Quan et parlo amb el cor 




DIGUES QUINA IMATGE QUE NO SURT A LA CANÇÓ


 









SOPA DE LLETRES 



ALTRES VERSIONS


Aquesta és una  Nadala que forma part d'un recull editat al cd NADAL AMB RITME.
 Va ser composada per Josep Thió.




FEM UN KARAOKE????


dimecres, 3 de desembre del 2014

ACENTUACIÓN

Para saber cuando se acentúan las palabras, primero tenemos que saber clasificar las palabras según el lugar dónde tienen la sílaba tónica.



Así que antes de practicar la acentuación, primero vamos a hacer estas actividades:



Ahora sí, empezamos con la acentuación.
Actividades para practicar:
- Palabras agudas


- Palabras llanas

 - Palabras esdrújulas
- Acentuación



dilluns, 10 de novembre del 2014

PRACTICAM LES OPERACIONS AMB FRACCIONS

                                                                                                                              

Clica damunt cada enllaç per tal de practicar les operacions amb fraccions

SUMES                                                                         RESTES       


                                                                          MULTIPLICACIONS  
 


Repàs Fraccions


  • FRACCIONS
Reglas de Divisibilidad

Las reglas de divisibilidad sirven para saber si un número es divisible por otro sin necesidad de realizar la división.
Divisible significa que al dividirlo por ese número el resultado es una división exacta con resto cero. Por ejemplo, 30 es divisible por 5 porque al dividirlo por 5 el resto es cero 30:5=6.

Las reglas:

Un número es divisible por 2, 3 ó 5 si:
2
si termina en 0 o en cifra par Ejemplos 50; 192; 24456;
3
si la suma de sus cifras es múltiplo de tres Ejemplos: 333 (dado que 3+3+3 =9); 9 es un múltiplo de 3; (3x3=9)
5
si termina en 0 o en 5 Ejemplos 35; 70; 1115;
 
Más ejemplos de la Regla del 3 -> (la suma de los cifras debe ser un múltiplo de 3).


663---> 6+6+3= 15 ----> 3 x 5 = 15
12123---> 1+2+1+2+3= 9 ----> 3 x 3 =9;



Estas reglas son importantes porque dado que te facilitan el cálculo de las descomposición de factores que a su vez sirven para reducir y simplificar fracciones.


Minimo Común Múltiplo (M.C.M.)
El mínimo común múltiplo (m. c. m.) de dos o más números es el menor múltiplo común distinto de cero.
  • Ejemplo: Averiguar el m.c.m. de Sacar el M.C.D. de 20 y 10:

    20: 20, 40, 60, 80...
    10: 10, 20, 30...
20 es el múltiplo menor que es común a ambos números.
Multiplos: los múltiplos de un número se obtienen multiplicando dicho número por los números naturales 0, 1, 2, 3, 4, 5.....
Ejemplo: múltiplos del 7: 7x0=0; 7x1=7; 7x2=14; 7x3=21; 7x4=28; 7x5=35 ....
O sea son múltiplos del 7:, 0, 7, 14, 21, 28, 35, 42, 48, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168...

Ejemplo: Calcular el m. c. m. de 4, 5 y 6.
Se hace la descomposición de factores (que ya la explicamos en el máximo común divisor). Lo hacemos de la siguiente forma:
4= 2x2
5= 5
6= 2x3
Se toman los factores comunes y no comunes con el mayor exponente y se multiplican: 2x2 x3 x5 = 60. El mcm de 4,5 y 6 es 60.

Reducción de Fracciones a común denominador

Debes conocer antes como calcular el mínimo común múltiplo (m. c. m.)
Para reducir dos o más fracciones a común denominador por el método del mínimo común múltiplo (m.c.m.), se toma como denominador común el m.c.m. de los denominadores y como numerador el resultado de multiplicar cada numerador por el cociente que resulta al dividir el denominador común entre el denomidador que corresponde a esa fracción.

Ejemplo 3/12 y 1/6
Calculamos el m.c.m., según ya hemos explicado, y es 12. Es decir, que los denominadores son los dos 12:


----
----
12
12
Para calcular los numeradores acuérdate de esta fórmula:
Nuevo numerador = Numerador antiguo x Denominador común/Denominador antiguo

En la primera fracción el numerador es 3 y el denominador es 12. Por tanto:
  • Nuevo numerador= 3 x 12 /12 = 3
En la segunda fracción el numerador es 1 y eld enominador es 6. Por tanto:
  • Nuevo numerador= 1 x 12 /6 = 2
Una vez calculados los nuevos numeradores (3 y 2) ya podemos completar las faracciones
3
2
----
----
12
12

Operacions amb fraccions

        Suma de fraccions
Per sumar fraccions és necessari que tinguin totes el mateix denominador.
Si les fraccions tenen diferents denominadors es passen a comú denominador, és a dir, es canvien per altres d'equivalents a elles, però totes amb el mateix denominador.

    S'han de seguir els següents passos:

  1. Es busca el mínim comú múltiple dels denominadors i es posa de denominador a cadascuna de les fraccions.
  2. Per trobar els nous numeradors es divideix aquest nombre pel denominador de cada fracció i es multiplica pel seu numerador.
  3. Finalment se sumen els numeradors i es deixa el mateix denominador.Si es pot se simplifica.

  • Suma i resta de fraccions

    1. Quan tenim sumes i restes seguim el mateix procés que si tinguéssim només sumes:
    2. En primer lloc, si les fraccions tenen diferents denominadors es passen a comú denominador, és a dir, es canvien per altres d'equivalents a elles, però totes amb el mateix denominador.
    3. Una vegada amb el mateix denominador, se sumen i resten els numeradors i es deixa el mateix denominador.
    4. Per últim, si es pot, se simplifica.
      
  • Multiplicació de fraccions

  1. Per multiplicar fraccions no cal posar-les amb igual denominador, es multipliquen directament.
  2. Multipliquem els numeradores i posem el resultat de numerador, multipliquem els denominadors i posem el resultat de denominador.
 El producte de dues fraccions és una altra fracció que té per numerador el producte dels numeradors, i per denominador el producte dels denominadors.

  • Divisió de fraccions

Dividir una fracció per una altra és el mateix que multiplicar la primera fracció per la inversa de la segona fracció.
  • Una fracció es pot dividir per qualsevol altra, menys per la fracció 0. 
    Operacions combinades
Per resoldre operacions combinades hem de tenir en compte aquestes indicacions:
• La missió dels parèntesis és la d'unir o "empaquetar" allò a què afecten.
• Els signes de multiplicar uneixen més que els de sumar i restar, és a dir, quan dos nombres estan units pel signe de multiplicar formen un bloc inseparable.
• Per poder sumar o restar dos nombres han d'estar sols, no podem sumar dos nombres si un d'ells està unit per l'altre costat a una altra expressió mitjançant un signe de multiplicar.
• Les operacions combinades es resolen per passos, tot el que no es resol en un pas s'ha de copiar una altra vegada com estava, sense oblidar-ho ni canviar-ho de posició.
• Com a norma general, és aconsellable començar resolent l'interior dels parèntesis, seguir després amb les multiplicacions i acabar amb les sumes i les restes.  


REPASSA I PRACTICA ALLÒ QUE NECESSITES   ( fes clic als enllaços )
     


divendres, 7 de novembre del 2014

REPASSEM LES FRACCIONS

QUÈ ÉS UNA FRACCIÓ 





SIMPLIFICACIÓ DE FRACCIONS



SUMA I RESTA DE FRACCIONS



MULTIPLICACIÓ I DIVISIÓ DE FRACCIONS




ALIMENTACIÓ SALUDABLE




'Super Size Me', un premiado documental contra la comida basura



El cineasta Morgan Spurlock decidió demostrar los efectos de la comida basura en la salud 

haciendo tres comidas diarias, durante un mes, en el restaurante McDonald's, el más 

popular de Estados Unidos y con más de 30.000 franquicias en todo el mundo. Un 

experimento que recogió en el apasionante documental Super Size Me.





divendres, 17 d’octubre del 2014

COMENCEM A DISENYAR EL NOSTRE BLOC

Com que hem començat per descriure cadascún dels alumnes del nostre grup, avuí vos he duit
 l' adreça d'una pàgina  que ens va molt bé per començar a omplir i disenyar el nostre bloc.
Entrau i pegau una ullada.




dijous, 20 de març del 2014

FEM LAPBOOKS PER EL PROJECTE DE LA 2ª GUERRA MUNDIAL

A classe vos he mostrat cóm podeu organitzar els vostres treballs amb un lapbook

 Qué és un lapbook? 

Un LAPBOOK és una especie de "llibre" desplegable (como si fos un tríptic) en el que de manera visual i creativa se treballa un tema previament escollit.

Cóm es fa? 

 Es fa a partir d'una base de cartolina que ens permetrà desenvolupar o exponer un tema. A l'interior anem recopilant dibuixos, fotos, objectes, activitats, esquemes, desplegables... relacionats amb el tema que treballem i ho anem aferrant.

Aquí vos deix uns tutorials de cóm fer lapbooks


Pas  u

  accesoris


Altra posibilitat


altra més


Aquí podeu veure cóm es fa un pop-up

Hi ha formats ja fets de desplegables . Podeu trobar-ne fent click al següents enllaços :
Pockets
Flap Books
Tri-folds
Petal Books
Graduated/Layer Books 
Shutterfold, Shutterflap, Shuttertied
Matchbooks
Fan Books
Tab Books
Simple Fold Basic Shapes
Accordion Books
Book, Notebook, Clipboards, and File Folders

T-Books and 3/4 Books

Wheel Books
Four Window Book
Staggered Book
 
Interlocks
Compressed Triangle
Bound Book
Pop-up Book
Envelope Book
Venn Diagram Flap

 Més plantilles : clica AQUÍ

Aquí  i     AQUÍ  podeu veure imatges de lapbooks ja acabats